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This volume of RIFT Systems Analysis, NSP—63 96, presents the results of aerody-
namic analysis for the Saturn VN launch vehlcles both RIFT and operational, which are

applicable to the 176, 000-1b impulse propellant capacity S-N stage. The aerodynamic
characteristics are obtained by a combination of theoretical methods and available
scale-model experimental test data. The information included here covers aerodynamic
data for the areas of stability and control, performance, and drag; data for structural

design; data for ground transporter design; and jet wake characteristics of secondary
propulsion systems. A 0 T ;1
t.A{

RIFT Systems Analysis. NSP-63-96, is submitted in accordance with the requirements

of Report No. 201 of the Data Submittal Document, NSP-63-94, dated 3 August 1963.
The eight-volume report constitutes the analysis summary of the second design itera-

tion, with the S-N stage size of 176, 000 impulse propellant capacity. Analyses esta-
blishing stage, support-system, and test requirements are reported. Intermediate
reports which have been published regarding selected analytical areas are referenced

as appropriate.

Because of the number of technical disciplines, the range of security classification,
and amount of material to be documented, this report is divided into discrete volumes.
The volume breakdown is as follows:
Volume Title
Vehicle Description and Summary
Flight Performance
Aerodynamics
Flight Dynamics and Control
Propulsion
Nucleonics
Thermodynamics
Structural Loads
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The participation of the Aero-Mechanics organization of the LMSC Research and
Engineering Division in the preparation of this report is acknowledged. This organi-
zation has provided technical support in aerodynamics to Nuclear Space Programs
for the development effort in the RIFT Program.
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SUMMARY

Aerodynamic characteristics for the Saturn VN Reactor-In-Flight-Test (RIFT) and
operational vehicle configurations, ML 471-105(01) and -5(01), are presented in this
report. The intent is to present a summary of the aerodynamic effort as applied to
these configurations embodying the 176, 000 1b impulse propellant.

The areas of aerodynamic study concerned the following major areas:

Stability and Control

Performance and Drag

Aerodynamics for Structural Design
Aerodynamics for Ground Transporters Design
Rocket Plume Investigations

Theoretical analyses were combined with experimental results (when available) to
provide the required information. The span of aerodynamic analyses extended from
the subsonic incompressible flow regime to the free-molecule flow regime.

Linear and non-linear aerodynamic characteristics which include normal force and
center-of-pressure characteristics were utilized for evaluation of vehicle stability and
for trajectory calculation. Primarily, initial trajectory calculations utilized the linear
aerodynamic coefficients. These characteristics have been established through use of
theory and experimental test results.

Aerodynamics in orbit were calculated for use in control system design analysis of
the S-N stage (RIFT). The aerodynamic analysis concerned the free-molecular flow
regime, and free-molecule flow methods developed at LMSC were utilized. Although
air is extremely rarified at orbital altitudes, an aerodynamic moment exists and was
accounted for in the analysis.

LOCKHEED MISSILES & SPACE COMPANY
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Preliminary calculations determined the venting orifice size required to alleviate
aerodynamic forces on the 20-deg nose fairing for the first-stage flight to be 1.6 sq ft
to vent a 27,622 cu ft volume and maintain a 2.0 psid, (P ) , for
the entire flight.

inside Poutside

Hypersonic aerodynamics in the continuum flow regime were calculated for application
to the stage separation problem. Inclusion of the aerodynamic forces in a separation
study showed their effect to be negligible due to the extremely low dynamic pressures

existing at separation.

Axial force (drag) characteristics were established including effects of base aspiration
and recirculation as well as protuberance drag values. Integrated velocity loss due to
drag is 142 fps for the RIFT vehicle (lob) trajectory, 194 fps for the Saturn VN opera-
tional vehicle suborbital start trajectory, and 172 fps for the orbital start trajectory.

A special study was conducted to determine the effect of drag increments on payload
capability. For the 176, 000-1b capacity stage, using a suborbit start mode, the pay-
load trade-off is -49 lb/percent increase in drag coefficient for a 72-hr lunar transfer
mission. Side effects caused by protuberances — such as buffeting, noise and localized
heating — must be considered. Protuberance test results, including effects of heating

and oscillating pressures, are expected to be available in 1964,

Normal force and pressure distributions along the body in the region of maximum
dynamic pressure were calculated for use in structural design. Fluctuating pressures
caused by engine noise, boundary-layer noise, and local shocks were estimated through-

out the complete Mach range.

To date, steady-state launch pad forces are based upon analytical analysis and test
results of dynamically scaled models. Wind tunnel test results on Saturn V configu-
rations will be available shortly and will be considered for any further estimates. A
method has been selected for calculating the oscillatory aerodynamic forces which act
in a direction transverse to the wind vector. The method gives results which are to

be used in a preliminary design capacity only.

vi
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Drag characteristics for the overland transporter (truck-trailer) configuration and
drag and oscillatory lift characteristics of the onsite transporter were estimated.
These results are being used for determining the overturning moments and stability
within a specified ground wind environment. Estimations of the oscillatory transverse
aerodynamic forces on the vertical onsite transporter show that for frequencies of

approximately one cps, the magnitude is of the same order as the steady drag forces.

Aerodynamic characteristics at liftoff were estimated for angles-of-attack from 0 to
90 deg. These coefficients, normal force, and center-of-pressure are for use in de-
termining stability and control as the vehicle leaves the launch pad.

The jet wake from the attitude control jets has been determined for the range of oper-
ating conditions for the cold-gas reaction-jet attitude-control system. These plume
characteristics are being used as a guide to the placement of this system on the S-N
stage. A similar investigation of interstage retrorocket exhaust impingement was

conducted to determine feasibility of submerged retrorocket installation designs.

vii

LOCKHEED MISSILES & SPACE COMPANY



Section

CONTENTS

FOREWORD

SUMMARY

ILLUSTRATIONS

VEHICLE CONFIGURATION DESIGNATION
TABLE OF DIMENSIONAL UNIT FACTORS
NOTATIONS

INTRODUCTION

AERODYNAMIC FLOW REGIMES

STABILITY AND CONTROL

3.1 Linear Aerodynamic Characteristics

3.2 Non-Linear Aerodynamic Characteristics
3.3 Aerodynamics In Orbit

3.4 Effect of Payload Length on Center—of-Pressure
3.5 Aerodynamics During S-N Stage Separation
3.6 Aerodynamics at Liftoff

3.7 Aerodynamic Damping

PERFORMANCE AND DRAG

4.1 Axial Force

4.2 Base Flow

4.3 Protuberances

4.4 Effect of Drag on Payload
AERODYNAMICS FOR STRUCTURAL DESIGN
5.1 Normal Force and Pressure Distribution
5.2 Fluctuating Pressures

5.3 Launch Pad Forces

ix

LOCKHEED MISSILES & SPACE COMPANY

NSP-63-96-Vol 3

1ii

3K <

xvii

1-1
2-1
3-1
3-1
3-14
3-21
3-31
3-31
341
3-45
4-1

4-5

4-8
4-11

5-21




NSP—-63-96-Vol 3

Section

5.4 Stage Venting
5.5 Flexible-Body Lift Distributions
6 AERODYNAMICS FOR GROUND TRANSPORTERS DESIGN
6.1 Overland Stage Transporter
6.2 Onsite Stage Transporter
7 ROCKET PLUME INVESTIGATIONS
7.1 Attitude Control Motor Wake Characteristics
7.2 Interstage Retrorocket Impingement '
8 REFERENCES
DISTRIBUTION LIST

LOCKHEED MISSILES & SPACE COMPANY

Page

5-21
5-23
6-1
6-1

7-1
7-1
7-7
8-1
VL-1



Figure

2-1

3-2
3-3

3-4
3-5

3-6
3-7

3-8

3-9
3-10

3-11
3-12

3-13
3-14
3-15

3~16

NSP-63-96~Vol 3

ILLUSTRATIONS

Saturn VN RIFT and Operational Vehicles Aerodynamics Flow
Regimes

Configuration Details for Saturn VN RIFT and Operational
Vehicles and Wind Tunnel Test Models

RIFT Vehicle Normal Force Curve Slope versus Mach Number

RIFT Vehicle Body-Alone Normal Force Curve Slope versus
Mach Number

RIFT Vehicle Tail Section Normal Force Curve Slope versus
Mach Number

Operational Vehicle Normal Force Curve Slope for Complete
Vehicle and for Body-Alone versus Mach Number

RIFT Vehicle Center-of-Pressure versus Mach Number

RIFT Vehicle Body-Alone Center-of-Pressure versus Mach
Number

Operational Vehicle Center-of-Pressure for Complete Vehicle
and for Body-Alone versus Mach Number

RIFT Vehicle Normal Force Coefficient versus Angle-of-Attack

Operational Vehicle Normal Force Coefficient versus Angle-
of-Attack

RIFT Vehicle Center-of-Pressure versus Angle-of-Attack

Operational Vehicle Center-of~Pressure versus Angle-of-
Attack

Saturn VN RIFT and Operational Vehicles Center-of-Pressure
versus Mach Number for 10 and 20 Degree Angle-of-Attack

Saturn VN RIFT and Operational Vehicles Axial Force Coefficient

versus Mach Number for 0, 10, and 16 Degree Angle-of-Attack

RIFT Vehicle Pitching Moments versus Angle-of-Attack at
Orbital Altitudes

RIFT Vehicle Pitch Moments versus Center-of-Pressure at
Orbital Altitudes

LOCKHEED MISSILES & SPACE COMPANY

Page

2-3

3-2
3-3

3~5

3-7
3-8

3-10

3-11
3-15

3-17
3-19

3~23
3-25
3-26
3-27

3-29



Figure
3-17

3-18
3-19

3-20
3-21
3-22

3-23
3-24
3-25
3-26
3-27

.3—28
3-29
4-1
4-2

4-3

4-5

4-6

NSP-63-96-~Vol 3

RIFT Vehicle Moment Coefficient versus Angle-of-Attack at
Orbital Altitudes

RIFT Vehicle Center-of-Pressure versus Angle-of-Attack at
Orbital Altitudes

RIFT Vehicle Normal Force Coefficient versus Angle-of—-Attack
at Orbital Altitudes

S-N Stage (RIFT) Axial Force Coefficients in Orbiting Flight
Effect of Payload-Envelope Length on Center-of-Pressure

RIFT Vehicle Normal Force Coefficients at Separation versus
Angle-of-Attack

Operational Vehicle Normal Force Coefficients at Separation
versus Angle-of-Attack

RIFT Vehicle Center-of-Pressure at Separation versus
Angle-of-Attack

Operational Vehicle Center-of-Pressure at Separation versus
Angle~of-Attack

RIFT Vehicle Axial Force Coefficient at Separation versus
Angle-of-Attack

Operational Vehicle Axial Force Coefficient at Separation versus
Angle-of-Attack

Saturn VN RIFT and Operational Vehicles Normal Force
Coefficient and Center-of-~Pressure at Liftoff

Saturn VN RIFT and Operational Vehicles Pitch Damping
Derivatives

Saturn VN RIFT and Operational Zero Lift Axial Force
Coefficients versus Mach number

Saturn VN RIFT and Operational Vehicles Axial Force
Component Breakdown versus Mach Number

Forebody Drag Correlation

S-IC Base Pressure Coefficient versus Mach Number Correlation
With Power On

S-IC Base Pressure Coefficient versus Engine—~Exit~to~Ambient
Pressure Ratio Correlation With Power On

Preliminary Saturn VN RIFT and Operational Vehicles Base~
Pressure Coefficients With Power On

xii

LOCKHEED MISSILES & SPACE COMPANY

Page

3-31

3-33

3~-34
3~35
3-36

3=37
3-38
3-39
3-40
3-42
3-43
3~44

3-46




Figure
4-7
4~8
4-9
4-10

5-1
5-2
5-3
5~4
5=5
5-6

5-8
5~9

5~10

5-11
5-12

5~13
6~1
6~-2

6~-3
6-4

6~5

NSP-63-96-Vol 3

Ratio of Protuberance Drag to Clean~Body Drag Correlation

S-N Stage (RIFT) Protuberances
S—-N Stage (RIFT) Retrorocket Profile

Trade—off Factor for Weight to Park Orbit With Respect to
Drag Coefficient

RIFT Vehicle Normal Force Coefficient Distributions
Operational Vehicle Normal Force Coefficient Distributions
RIFT Vehicle Pressure Coefficient Distributions
Operational Vehicle Pressure Coefficient Distributions

S-N Stage (RIFT) Fluctuating Pressure versus Flight Time

Fluctuating Pressure Spectrum on S-N Stage (RIFT) Under
Static S-IC Firing

Fluctuating Pressure Spectrum on Aft Section of S-N Stage
(RIFT) at Flight Time of 49.5 Seconds

Fluctuating Pressures Due to Normal Shocks

Turbulent Boundary Layer Fluctuating Pressure Spectrum on
S-N Stage (RIFT)

Sound Pressure Level Spectrum at the S-N Stage (RIFT) Under
Static S-IC Firing

Turbulent Boundary Layer Fluctuating Pressure Correlation

Saturn VN RIFT and Operational Vehicles Launch Pad Steady-
State Drag Coefficient Distributions

S~N Stage (RIFT) 20-Degree Nose Fairing Pressures and
Venting

Reynolds Numbers Relationships to Wind Conditions for
Vehicle at Ground Level

Steady~-State Drag Coefficients Distribution for Onsite
Transporter

Detailed Coefficient Distribution for Onsite Transporter

Transverse Oscillatory Lift Force Coefficients Distribution
for Onsite Transporter

Ground Wind Speed Profiles Under Steady-State Conditions

LOCKHEED MISSILES & SPACE COMPANY

Page

4~10
4~12
4-13

4-14
5-3
5-5
5-7
5-9
5-11

5-12

5-12
5-13

5-15

5-18
5-20

5-22

5-24

6-2

6-4
6-5

6-7
6-8



Figure
7-1

-4

T=5

7-6
7-7

NSP-63-96-Vol 3

RIFT Attitude Control Motor Set Wake With Constant Mach
Number Contours at High Pressure

RIFT Attitude Control Motor Set Wake With Constant Flow
Angle Contours at High Pressure

RIFT Attitude Control Motor Set Wake With Constant Mach
Number Contours at Low Pressure

RIFT Attitude Control Motor Set Wake With Constant Flow
Angle Contours at Low Pressure

RIFT Attitude Control Motor Hydrogen Gas Condensation
Limits

Retrorocket Installation on Interstage

Retrorocket Effective Thrust Deflection Angle versus
Deflector Length

LOCKHEED MISSILES & SPACE COMPANY

Page

-2



NSP-63-96-Vol 3

CONFIGURATION DESIGNATION

Where applicable, stage and vehicle configurations defined in this report are identified
by model numbers to specify the different arrangements designated for engineering
design and analysis. The basic LMSC model number assigned to the S-N Stage (RIFT)
Program is ML 471. The different S-N stage models, vehicles, and flights are identi~
fied by a sequential series of dash numbers attached to the basic model number.

The S-N stage model numbers are of the form:
ML 471~XXX

S-N stage number

Program number

The first component attached to the basic model number identifies the S-N stage model.
A new stage number is assigned upon significant variation of any of the stage elements.
S-N stage numbers from ML 471~-1 through ML 471-99 designate models associated
with the operational vehicle; model numbers ML 471-101 and subsequent designate
RIFT models.

The vehicle and flight or mission numbers are of the form:
ML 471-XXX (XX~-XX)
Flight or mission number

Vehicle number
The next component of the model number is the vehicle number, designating a partic-

ular Saturn VN launch vehicle. For a particular S-N stage model, a new vehicle
number is assigned upon significant physical or functional variation in any of the

LOCKHEED MISSILES & SPACE COMPANY
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vehicle elements. Thus the operational Iaunch vehicles associated with the first S-N
stage model are designated by ML 471-1(01) and subsequent, while the RIFT launch
vehicles associated with the first S-N stage model are designated by ML 471-101(01)

and subsequent.
The final component of the model number is the flight or mission number. For a spe-

cific vehicle configuration number, significant flight trajectories or mission programs
are identified by ML 471-XXX(XX~-01) and subsequent.
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Quantity

Acceleration

Area

Density

Energy

Force

Length

Mass
Mass Flow Rate

Pressure
Temperature
Velocity

Volume

Volume Flow

DIMENSIONAL UNIT CONVERSION FACTORS

Multiply

ft/sec?

.2

in.

ftz

1b-sec?
ft4

slug/ft3

Btu

1b
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By
3.04800 x 10-1
6.45160 x 1074
9.29030 x 10~2

5.25539 x 101

5.25539 x 101

2.51996 x 1071
4.53592 x 1071
2.54000 x 1072
3.0480 x 1071

1.48816

1.48816

7.03067 x 1072

4.882 x 1074

5.55556 x 10~1
3.04800 x 1071
3.78543 x 1073
2.83168 x 1072
2.83168 x 1072

3.78543 x 1073

xvii
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NOTATIONS

Area weighting factor
Angle-of-attack

2

M®™ -1
Coefficient
Axial force coefficient = Axi—aésf_q_r_@

DRAG

Drag coefficient ~ oS

Lift coefficient
dC L/ dX (Local lift)

NSP-63-96-Vol 3

Pitching moment coefficient

Pitching damping derivative

Normal force
gS

dC
Normal force derivative, da

P - Pwo

Pressure Coefficient = =
q

Reference diameter, 33 ft

( Pitching moment

qSD

)

Normal force curve slope distribution along the body, per degree,

per inch
Maximum

Instantaneous body deflection

xix
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RE, RN

rms

(S)

Fineness ratio drag factor

: a6
Pitch rate, dt
Frequency, cps
Constant of proportionality

Interference factor due to fins

Length

Mach number

Mass ratio

Static pressure

Root-mean-square fluctuating pressure
Engine exit pressure

Ambient pressure

Dynamic pressure, % pV2

Fin aspect ratio ~ (span)z/ area
Span measured from body centerline
Reynolds number

Root-mean-square

Density

2
 (33) 2
2 ~ ft

Reference area ~

A
V 2.0RT

Molecular speed ratio =

Body deflection

Temperature, °R

Flight velocity
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CP
2.0RT

XMme

Moo W0

e

o

>>

<<

Axial coordinate along body centerline
Center-of-pressure
Most probable molecular speed
Thermal accommodation coefficient
Moment center

SUBSCRIPTS
Cone
Lift carryover onto body
Isolated fin
Induced lift on fin due to body-shroud upwash
Induced

Zero time

Protuberance based on added area

Base pressure (average)

Isolated shroud

Induced lift on shroud due to body upwash

Induced lift on shroud due to the fin

Body reference area, 855 ftz

Refers to free-stream conditions
SYMBOLS

Partial derivative
Greater than

Much greater than
Less than

Much less than
Approximately equals

xxi
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Section 1
INTRODUCTION

A summary of the aerodynamic effort expended on the Saturn VN Reactor-In~Flight-
Test (RIFT) and Saturn VN operational vehicles employing the 176, 000-1b impulse
propellant and a resume of the various areas of aerodynamic work are presented in

this report. The results are based upon available test results accomplished to date.

Thus far, all wind tunnel tests have been conducted on small-scale models. The full-
scale RIFT vehicle is very large, thus duplication of full-scale Reynolds numbers in
these tests has not been accomplished. Reynolds numbers are believed to be sufficiently
high to negate any scale effects; however, determination of the validity of this assump-

tion will depend upon future larger scale tests.

The correlation of estimated aerodynamic characteristics with available experimental

data is shown.

In general, most areas of study did not have directly applicable test data. Only in the
areas of linear aerodynamics were data available for the RIFT vehicle configuration.
Aerodynamics in orbit, used for application in control system design of the S-N stage,
employed only free-molecule flow theory. For determining linear and non-linear
aerodynamics for the Saturn VN operational vehicle, base flow characteristics, nor-
mal force and pressure distributions, fluctuating pressures, and launch pad forces,

a combination of theory and data correlations for similar configurations was utilized.

Where test results were unavailable, methods of analysis suitable for preliminary

design were devised.

LOCKHEED MISSILES & SPACE COMPANY
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Precise evaluation of aerodynamic characteristics in determining launch pad trans-
verse oscillatory aerodynamic coefficients has been one of the most difficult areas to
analyze. To date, no completely satisfactory solution has been determined, and reli-
ance is placed on experimental results. These transverse oscillatory forces are com-
pletely random for the Saturn V vehicles, and the importance of correctly establishing
their magnitude is that they may establish structural design criteria rather than the

maximum dynamic-pressure inflight condition.
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Section 2
AERODYNAMIC FLOW REGIMES

Aerodynamic flow regimes which the Saturn VN Reactor-In-Flight-Test (RIFT) and
operational vehicles encounter extend from the incompressible flow regime (Mach
number s~ 0) while the vehicle is sitting on the launch pad to the free-molecular flow
regime when the S-N stage (RIFT) is in orbit. Theoretical methods are available for
aerodynamic analysis throughout most of these regions. In the transonic region, theo-
retical solutions are not available, and reliance is placed on experimental results and
on correlations of experimental results. The various flight regimes are shown in

Fig. 2-1 along with the Saturn VN RIFT and operational vehicles (orbital and suborbital)
trajectory characteristics up to S-N stage separation. Note that the dynamic pressure
is essentially zero for all three trajectories at the beginning of the slip flow regime.

The flow regime boundaries are defined in terms of the ratio of the mean free path of
the air molecules to a characteristic body dimension. If the mean free path is small
compared to the body dimension, the air is considered to be a continuum. When the
air is sufficiently rarefied, the molecules next to the surface no longer adhere but
"slip" over the surface at a specific velocity. This type of flow is slip flow and is the

regime immediately following the continuurh regime.

The two boundaries for the onset of slip flow are given as:

For Reynolds numbers < < than 1.0,

2-1
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For Reynolds numbers >> than 1.0,

M

\/RT = 0.01
L

where:

RE
M

L Reynolds number based on body length, L

Mach number

M
The upper limit of the slip regime is defined where ~ 1.0. Between slip flow
\/ RE L
and free-molecule flow is the transition regime where molecule-molecule interaction

and molecule-body interaction are equally probable.

When the mean free path of the air molecules is much larger than the body dimensions,
free-molecule flow exists. The boundary of free-molecule flow is given as:

M 5 1

, RE << 1,0
REL

In free-molecule flow, the chance of molecule-molecule collision is much less than of

molecule-body collision.
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Section 3
STABILITY AND CONTROL

3.1 LINEAR AERODYNAMIC CHARACTERISTICS

The normal force curve slope and center-of-pressure characteristics presented in this
section were calculated in support of the effort to size the operational vehicle and are
representative of aerodynamic estimates of the basic vehicles to date. Figure 3-1 shows
RIFT and operational vehicles (Configs.: D — RIFT lob; and E — operational) configura-
tion details for which these estimates were made. Note that Config. D is the Saturn VN
RIFT vehicle encompassing the S-N stage (Reactor-In-Flight-Test — RIFT). This figure

also shows configurations for which test data are available.

Figure 3-2 presents the normal force curve slope, CNa , for the complete RIFT vehicle.
The slopes are shown versus Mach number and are based upon the correlation of all
analytical and experimental results available to date. Experimental results were taken
from Refs. 1 through 4.*

Those experimental results from Refs. 1 and 2 were used for establishing fin and

shroud characteristics; the design curve shown is the most representative fairing of

all the test data. For the complete configuration, most emphasis was placed on the

P34 test data (Refs. 3 and 4). Normal force curve slope for the RIFT vehicle body-alone
is indicated in Fig. 3-3. The design curve for the body-alone is assumed to follow the
test data of Ref. 5 from Mach numbers 0.7 to 2. 0; Allen's viscous cross-force theory,
Ref. 6, for incompressible flow and design correlation curves at Mach number 3.0; and
experimental data of Ref. 7 at Mach number 6.86. No emphasis was placed on the sub-

sonic test data from the P34 test, because the results were erratic.

Supersonic results from the P34 test have the same trend versus Mach number, and
the curves are slightly higher than the design curve. Normal force characteristics for

the fins-plus-shrouds-plus carryover force on the body are shown in Fig. 3-4. The

*See Section 8 for list of references.
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design fin normal force values are simply the difference between the total configuration
value (Fig. 3-2) and the body-alone values (Fig. 3-3). These values are compared

with small-scale test results obtained from Refs. 1 and 2. (

In Fig. 3-4, theoretical and experimental engine-shroud normal force derivatives ver-
sus Mach number are also shown. The experimental results are from Ref. 1 and show
extremely good agreement between theory and experiment for Mach numbers > 1.5.

For Mach numbers < 1.5, the comparison with test data is acceptable only on an order-
of-magnitude basis. Fin and shroud carryover lift on the body area (extending between
the shrouds and fins) are also presented in Fig. 3-4. Again, the theoretical results

are compared with test results from Ref. 1 and the comparison is quite satisfactory.
Theoretical methods for calculating fin, shroud, and body carryover effects are
described at the end of this section.

Normal force derivative, CN , for the complete Saturn VN operatioﬁal vehicle configu-
o

ration is presented in Fig. 3-5. The body lift was determined from Allen's viscous
cross-force theory (Ref. 6) for incompressible flow while in the transonic range data
of Ref. 8 and experimental correlations for cone-cylinders were used. Experimental
results for configuration CM-1 in Ref. 2 show good agreement with the estimates.

At supersonic speeds, second-order shock-expansion theory, tangent cone approxima-
tions, and empirical results from Ref. 8 and design curves were correlated. Modified
Newtonian theory and the correlations of Ref. 9 were applied at hypersonic Mach num-
bers. The tail-section normal force characteristics are the same as those for the

RIFT vehicle described previously.

Center—of-pressure variation with Mach number for the complete RIFT vehicle and for
the tail section is presented in Fig. 3-6. The center—-of-pressure location for the body
carryover force was determined by observing force distribution over this area from

Ref. 1 test results. This value was then taken as a constant corresponding to missile

LOCKHEED MISSILES & SPACE COMPANY
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station 237. The plot of the body-alone (no fins or shrouds) center-of-pressure is
shown in Fig. 3-7. A profusion of test results from Refs. 3, 4, and 5 and test data
for a 14-deg cone-cylinder, result in erratic answers in the transonic region. Analyt-
ical results are satisfactory up to Mach number of 2.0, but for Mach numbers > 2.0,
reliance was placed on experimental correlations of similar configurations. Reference
7 provided a value at Mach number 6.86. The average spread in these results is ap-
proximately one-half caliber. Fin and shroud normal force characteristics (Fig. 3-4),
body normal force derivative (Fig. 3-3), and body center-of-pressure (Fig. 3-7) were

combined to solve for the center-of-pressure of the complete configuration.

The center—of-pressure for the Saturn VN operational vehicle body-alone configuration

utilized the same methods described in calculating the normal force derivatives. Center-
of-pressure variation with Mach number is presented in Fig. 3-8 for the complete Saturn
VN operational vehicle and for the body-alone. Comparison of the design curve with test

results from a similar configuration, CM-1 in Ref. 2 is satisfactory.

The lift of the Saturn-type vehicle's tail section consists of many component parts.
Basically, these parts are the lift of the fins in presence of the body and engine
shrouds, lift of the shrouds in presence of the body and fins, and lift on the body area
extending between the shrouds due to carryover effects from the shrouds and fins.

In equation form:

C.. tail (c) +(c) +(c) +(c)
N N N N N
o o F+FB o BF o S+SB o SF
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Subscripts refer to:

F = isolated fin
FB = induced lift on fin due to body-shroud upwash
B F = lift carryover onto body

S = isololated shroud (15 deg cone)
S = induced lift on shroud due to body upwash
S = induced lift on shroud due to the fin

Subsonically, the method of Ref. 10 was used to determine the normal force derivative

of the isolated fin, C Transonic values were faired in to reflect experimental

Ny F

results shown in Ref, 11. Supersonically, the linear "first-order" theory of Ackeret,
pp. 73, 140, Ref. 12, corrected for effects of finite aspect ratio, was used. This

expression is given as:

_ 4 __1 .
CNa =B (1 m‘) , per radian

where:

B M2 - 1
R

fin aspect ratio ~ (span)z/ area

Fins on the Saturn VN operational vehicle are mounted on the conical engine shrouds.

For this reason, upwash effects were determined utilizing an equivalent body diameter.

The equivalent diameter was considered to extend out to the mid-point of the fin root
chord and, therefore, includes an effect of upwash caused by engine shrouds. Upwash
and carryover effects were determined using the methods of Nielsen and Kaatari,

Ref. 13.
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Total engine~shroud normal force derivatives in the presence of the body and fins
were calculated using the following derived expression:

S 1 S
C +{C = 2(C (e ) + K A (C ) (_F )
( Noz)s+sB ( Na)SF ( Na)e S BF Na F S

ref ref

where:

CN ) = normal force derivative for a 15 deg cone
a/c

S, = ghroud (cone) base area

KB = interference factor due to the fins, Ref. 13
F

SF = exposed fin area (two panels)

- 2
Sre £ = body reference area, 855 ft
A1 = an area weighting factor

= (planform area shrouds)
planform area of body
extending between shrouds

The factor, 2.0, is the body upwash factor and results from the induced angle-of-
attack on the shrouds being twice the free-stream body angle-of-attack. The induced
angle-of-attack was calculated by:

where:
R

r

body radius

span measured from body centerline

It

as given in Ref. 12. Utilizing these procedures, highly satisfactory correlations were

obtained.
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3.2 NON-LINEAR AERODYNAMIC CHARACTERISTICS

Normal force, center-of-pressure, and axial force characteristics as a function of
angle-of-attack and covering a Mach number range from 0. 8 to 3. 0 are presented in
this section. Non-linear characteristics are prepared for trajectory studies where
gusts, missile angle-of-attack, and missile control are evaluated. Configurations
for which test data are available are presented in Fig. 3-1.

Normal force coefficients, CN , versus angle-of-attack for the RIFT vehicle are
shown in Fig. 3-9, for Mach numbers from 0. 8 to 3.0. Test data from Refs. 1 and 4
for the complete configuration are shown. In addition, test results for the body-alone,
taken from Refs. 5 and 14, were combined with the tail-section force coefficients
from the Ref. 1 test. The linear slope, (CNa)a o , given in Section 3,1, is shown

for comparison.

Note that subsonically the linearity extends up to 8~deg angle-of-attack, while for
Mach numbers > 1.4, the linear range extends to only 4 deg.

Normal force coefficients for the Saturn VN operational vehicle are shown by Fig. 3-10.
Test data from Refs. 1 and 4 are plotted for comparison. For low angles-of-attack,
the linear characteristics, noted previously in Section 3.1, are in agreement with the
test results. At angles-of-attack above the linear range, the design curve was faired

through the most representative test data.

Centers-of-pressure versus angle-of-attack for the RIFT vehicle are presented in

Fig. 3-11. Test data from Ref. 4 is plotted for comparison. The design center-of-
pressure variation was established by using the method presented by Perkins and Allen
in Ref. 6. At 90-deg angle-of-attack, the center-of-pressure is assumed to act at the
planform area centroid. Agreement with the test results is satisfactory and within
one-half caliber.
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Center-of-pressure variations for the Saturn VN operational vehicle configuration are
shown in Fig. 3-12, and theoretical design curves are compared with test results of
Refs. 1 and 4. Test results from Ref, 1 were adjusted to account for differences in
test-vehicle length as compared with the Saturn VN length; this was necessary for a
reasonable basis of comparison. The accuracy here is approximately one-half caliber.
Center-of-pressure versus Mach number are presented for both vehicles in Fig. 3-13
for 10- and 20-deg angles-of-attack.

Axial force coefficients, C A » versus Mach number for angles-of-attack of 0, 10
and 16 deg are presented in Fig, 3-14 for the Saturn VN RIFT and operational vehicle
configurations. The values at angle-of-attack were calculated by applying a ratio

(c A/ C, ) , obtained from test results of Refs. 3 and 4 to the value of C, at «
a=0
=0 deg.

A

3.3 AERODYNAMICS IN ORBIT

Pitching moment and aerodynamic force coefficients of the S-N stage at three or-
bital altitudes are presented in this section. The characteristics were calculated at

altitudes of 0. 422, 0.528, and 1. 056 x 106 feet at corresponding circular orbital veloc~

ities. These results were determined using the free-molecular flow theory described
in Ref. 15 (and others) and were calculated to facilitate control force system design.
Density values at these altitudes were taken from the 1962 U.S. Standard Atmosphere
tables. All calculations utilized a molecular speed ratio (S) of 13, because the free-
molecule coefficients are essentially constant above (S) of 13. A thermal accommo-
dation coefficient of 1.0 was assumed, which means that the impacting molecules reach

skin temperature before reemission.

Pitching moment versus angle-of-attack for three different center-of-gravity loca-
tions and for the three representative altitudes are presented in Fig. 3-15. Cross
plots of these figures, shown in Fig. 3-16, are linear versus body station and
enable the determination of the body station for zero aerodynamic moment. The
total pitching moment consists of a component due to an asymmetric axial force,

and a component due to normal force. The component breakdown is shown by
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and 16 Degree Angle-of-Attack

Fig. 3-14 Saturn VN RIFT and Operational Vehicles Axial Force Coefficient versus
Mach Number for 0, 10,
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Fig. 3-17 in the form of moment coefficients, C,, , versus angle-of-attack. The
point of application of the normal force component and the body station for zero aerody-
namic moment versus angle-of-attack are presented by Fig. 3-18. Free-molecular
normal force coefficient is indicated by Fig. 3-19. The axial force coefficient versus

angle-of-attack is presented in Fig. 3-20.

3.4 EFFECT OF PAYLOAD LENGTH ON CENTER-OF-PRESSURE

A brief study for determining the effect of changing the payload-envelope length on the
center-of-pressure location was conducted. Results determined previously in this
report for the Saturn VN RIFT and operation vehicle configurations were utilized in
combination with test results from Ref. 2 and correlated test results to give the varia-
tion shown in Fig. 3-21. The effect of changing the envelope length from 0.7 caliber
(RIFT) to 3.0 calibers is observed to move the total vehicle center-of-pressure for-
ward by only 0. 5 caliber at Mach number 1.5. The change at Mach number 1.0 is

essentially zero.

3.5 AERODYNAMICS DURING S-N STAGE SEPARATION

Estimates of the normal and axial force coefficients and center-of-pressure have been
made for the Saturn VN RIFT and operational vehicles just prior to and directly after
S-N stage separation. The results presented here are based upon hypersonic modified
Newtonian theory and are intended for use in determining the effects on separation per-

formance should separation occur in a region where dynamic pressure is significant.

Normal force coefficients versus angle-of-attack are presented in Figs. 3-22 and 3-23,
These figures also show the component breakdowns for the S-N stage, the trailing
booster at a separation distance not in excess of one caliber, and the complete configu-
ration just prior to S-N stage separation. Based upon an assumption of no appreciable
change in normal force for separation distances less than 1, 0 caliber, the trailing
booster has only normal force due to body cross—flow; and contributions due to fins

and shrouds for the Saturn VN (RIFT) vehicle. Centers—of-pressure versus angle-of-

attack are shown by Figs. 3-24 and 3-25.
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Fig. 3-24 RIFT Vehicle Center-of-Pressure at Separation versus Angle-of-Attack
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Axial force coefficients are presented by Figs. 3-26 and 3-27. The axial force for
the trailing booster increases sharply with angle-of-attack following separation due
to flow impingement on the flat face of the booster. Complete separation of the S-N
stage nozzles from the interstage occurs at approximately 1. 0 caliber.

3.6 LIFTOFF AERODYNAMICS

Aerodynamic characteristics of the Saturn VN RIFT and operational vehicles for study-
ing liftoff motions are noted in Fig. 3-28. The normal force coefficient and center-of-
pressure are presented for Mach numbers < < 1.0 and for angles-of-attack from 0 to
90 deg.

Variation of normal force versus angle-of-attack was determined as follows:

(1) From a@ = 0 to 15 deg, normal force curve slopes from Figs. 3~2 and
3-5, Section 3.1 of this report, were utilized.

(2) At o = 90 deg, integrations of the launch pad cross-force coefficient
distributions were made.

(3) For a = 15 to 90 deg, normal force coefficient was estimated according to:

Cy = Cy sin® . (See Ref. 18.)
(90 deg @)

Centers-of-pressure were obtained as follows:

(1) For zero deg angle-of-attack, the centers-of-pressure were taken from
Figs. 3-6 and 3-8, Section 3.1 of this report.
(2) At 90 deg a , the center-of-pressure was located at the planform area

centroid.
(3) From a = 0 to 90 deg, the viscous cross-force theory of Allen, Ref. 6

was used.
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Fig. 3-27 Operational Vehicle Axial Force Coefficient at Separation versus Angle-of-
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3.7 AERODYNAMIC DAMPING

The aerodynamic damping characteristics evaluated thus far have been restricted to
3C

the pitch damping derivative, —en—ll)— This is the most significant of the damping
(%)
v

parameters and is adequate for preliminary design analysis. Past experience in tra-
jectory analysis has shown that the effect of aerodynamic damping on rigid-body dyna-
mics is negligible; it is, however, necessary to establish the magnitude of these damp-
ing characteristics. The pitch damping derivative was calculated using a simplified
"quasi-steady' method. The basic assumption for this method is that the induced
angle-of-attack (due to pitching) acts at the location of the steady-state normal force
center—-of-pressure. The resulting equation is:

2 2
-— X —_—
3 Ppody XMC XMe

cp, .
_ _ tail
éD = ch D Cos ao CNa D
3 (— body tail

Cos
(o}

R
]

angle-of-attack at time zero

o
I

vehicle station of center-of-pressure

vehicle station of moment center

g

dC
C = (=X} - normal~force coefficient derivative, 1/radian
Na do
D = body diameter

The pitch damping derivatives for the operational and RIFT vehicles are shown in
Fig. 3-29.
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Section 4
PERFORMANCE AND DRAG

4.1 AXTIAL FORCE

Total axial force coefficients at zero zngle~of-attack for the Saturn VN Reactor-In-
Flight-Test (RIFT) and operational vehicles are presented in Fig. 4-1. This total force
broken into its component parts is shown in Fig. 4-2; the breakdown gives the pressure
drag of the forebodies, engine shrouds, and fins; the total skin friction; and the base drag.

Forebody pressure drag of the 15~ and 20-deg forecones is based upon correlation of
experimental results from Refs. 8, 16, and 4*; test data for a 20-deg blunted cone;
cone theory results from Ref. 43, modified Newtonian theory; and design correlation
curves. The 20-deg frustrum pressure drag on the Saturn VN vehicle was determined

from correlated test results and second-order shock theory. These correlation curves

are shown by Fig, 4~3. e *
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versus Mach Number (Ref. Area = 855 Ft2)

*See Section 8 for list of references. }
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experimental subsonic data from Ref. 16. The airfoil was assumed to have a 10 per-
cent thickness ratio, a blunt trailing edge, aund a double wedge section over 50 percent
of the chord.

The base drag characteristics included the effects of aspiration and recirculation of

the exhaust gases. A discussion of base drag is presented in Section 4. 2.

Effects of protuberances on drag is discussed in Section 4.3. Protuberance drag
values are in the order of 10 percent of the basic vehicle drag and are not included in

the total drag shown in this section.

4.2 BASE FLOW

At Mach numbers << 1.0, the effect of the engine-exhaust jet is to aspirate the base
region which produces a lower base pressure and an increased base drag. This
effect then diminishes at transonic speeds. At higher Mach numbers and altitudes,
the jet exhaust boundaries of multinozzle configurations intersect with one another
and create a recirculation of the flow between the nozzles, directing the flow back

toward the base and increasing base pressures.

Base pressure characteristics for the Saturn V have been previously estimated by

MSFC and are presented in Ref. 19 with base scoops and in Ref. 2 with scoops removed.

These results are included here and are compared with available test results for

single and multinozzle configurations.

Average base-pressure coefficients (power on) for the Saturn V vehicle base configu-
ration with and without base scoops are presented in Figs. 4-4 and 4-5. In Fig. 4-4,
the pressure coefficients were correlated as a function of Mach number and in Fig.

4~5, as a function of engine-exit-to-ambient pressure ratio. Effect of the jet flow on
base pressures is indicated by the position of the power-on data relative to the curve
shown for no jet flow. Base-pressure coefficients for no jet flow were derived from

numerous correlations of test results.

4-5
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The effect of adding base scoops is seen to decrease the average (negative) base pres-
sure which reduces base drag. This effect was also noted by the data from Ref. 22
which presents test results of a five-nozzle configuration with and without base scoops.
Figure 4-5 indicates that as the pressure ratio, Pe/ P, , increases to large values

(> 20), the effect of Mach number and other variables is decreased and the base
pressures can be represented by a single design curve. The preliminary base-pressure
curves for the Saturn VN RIFT and operational vehicles are presented in Fig. 4-6; these
were taken basically from the results presented in Refs. 2 and 21 and shown by Figs. 4-4
and 4-5. These results will be altered to reflect any further test information as such

information becomes available,
4,3 PROTUBERANCES

External protuberances have a number of effects on flow characteristics. The pres-
ence of these protuberances alters the local flow field which affects local flow stability,
pressures, normal and axial forces, and local heating rates. At high-subsonic and
supersonic speeds, unsymmetric-unsteady shocks cause buffeting. More detailed
description of these effects is noted in Ref. 21; however, in this section, only effects

of protuberances on axial force will be presented.

To provide a basis for drag estimation, a general correlation was made using the data
for typical vehicle protuberances from Refs. 22 through 25 and others. This correla-
tion, Fig. 4-7, shows the ratio of protuberance drag to clean-body drag as a function

of Mach number. Also shown is the estimated drag of circumferential ring stiffeners

on the S-N stage and the S-II stage retrorockets.

Using Fig. 4-7 and the projected frontal areas of the S-N stage protuberances, the
stage protuberance drag amounts to approximately 10 percent subsonically and 4 per-
cent supersonically of the clean-vehicle total drag; the drag of protuberances on the

first stage are not included in this number.
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Further study and test results are necessary to determine the effect of spacing on the
aerodynamic characteristics of circumferential ring stiffeners. If the spacing ratio is
greater than 15, the flow may reattach between rings and increase the drag significantly.
Proposed RIFT protuberances, including circumferential ring configurations, for test
in conjunction with MSFC P73 wind tunnel program were presented in letter LMSC/
A304012, RIFT Protuberance Data, dated 14 June 1963.

S-N Stage (RIFT) protuberances are shown in Fig. 4-8. The S-II retrorocket instal-
lation upon which protuberance drag is estimated is shown in Fig. 4-9.

4.4 EFFECT OF DRAG ON PAYLOAD

The effect on the payload capability of changing the Saturn VN vehicle drag has been
determined. A trade-off factor is required in comparing internal versus external
installation of retrorockets, and the evaluation of protuberance effects on flight per-
formance. It is based upon a series of trajectories with optimized attitude computed
to a 100-nm park orbit. The drag increases were simulated for the suborbital start
mission mode by taking percentage increases in the drag coefficient across the Mach

number range.

The payload trade-off factor, while linear with respect to drag changes is a non-linear
function of S-II stage propellant loading. The drag trade-off factor for weight to the
park orbit is shown in Fig. 4-10 as a function of the S-II propellant load. By present-
ing the data in terms of gross weight at the park orbit (a more general form than pay-
load), the payload trade-off factor for any mission may be determined by dividing the
park-orbit gross-weight trade-off by the mass ratio at park orbit departure. Thus,
the change in payload weight may be calculated by

oW AC
_ e D
A Payload = (B CD) i

4-11

LOCKHEED MISSILES & SPACE COMPANY



NSP-63-96-Vol 3

3% TYRICHL
D }6. z25
# “be
(]
\ ’
/4

0%

N

39°

\

B
All
b4
SCALE I'r 60"
TTEM | LENGTH | WIDTH | HEIGHT | NO.REQD.
A 27 /2" 454" ? /2" 2 ANTENNAE
8 42 %" 6 7" 5 Y%e” 4
c &%%2” 32" Z 'Ye” 2
[>) /" EL K 27" /
E 76" 22" 2.2" /
F 599”7 /2" 6" K4 TUNNELS
G 599" a/s" 797 | ArmRex s | STIFFENERS

NSP 6647

Fig. 4-8 S-N Stage (RIFT) Proturberances

4-12

LOCKHEED MISSILES & SPACE COMPANY




a[oxd jexooI0a3ey (ILJAIY) 93els N-S 6-% "84

SHHONI
o¥1 02T 001 08 09 Vi

B899 4SN

0¢ 0

NSP-63-96-Vol 3

2 .
<
b |
P |
©
Q
|72}
p= el © put— — ¥S
-
m. .
2 fern- 6ET
By
M ptt———— ) ———————
T
| w T *
6 T ! Z1
| i 1 I*I
0°$29%
03/1 :AIVDS VIS ‘"HIA

4-13

LOCKHEED MISSILES & SPACE COMPANY



)
i
S usopzeo) Sexq 03 309dE8Yy YHM 3IQI0 YIBJ 03 JYBTBM I0F J030BI JJO-OPBIL 0T-% “SHi
&
0_v 6Y99 dSN
2]
n_o mnS X g1 ~ HDNIAVOT INVITIJOUd IDVISNIVIN O-S
W 0g6 036 016 006 068 088
Z 0g-
” _ I _ _
=
Q
5
. 0¥7- o) o
muom

06—

09-

4-14

0L-

08~

LOCKHEED MISSILES & SPACE COMPANY

LISYO MYVd OL TVILYVd LHDIIM %/d71 ~

06—

N-SIJOW S2°T = M/L HONAV' =4 001~




NSP-63-96~Vol 3

partial for weight to park orbit

S~
3 2
O le
1

>
Q
i

percent increase of drag coefficient

mass ratio at park-orbit departure

=
n

For the 176, 000-1b impulse propellant capacity S-N stage using a suborbital start
mode, the payload trade-off is -49 1b per percent~increase in drag coefficient for a
72-hour lunar transfer mission. As the mission velocity requirement increases, the
payload decrement decreases. For missions where maximum S-II stage propellant
capacity is used, the payload trade~off is reduced to -22 Ib per percent-increase.
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Section 5
AERODYNAMICS FOR STRUCTURAL DESIGN

5.1 NORMAL FORCE AND PRESSURE DISTRIBUTION

Linear normal force and pressure coefficient distributions are presented in this section
for Mach numbers 1.2, 1.5, and 2.0, Since the theoretical methods available do not
accurately predict solutions at Mach number of 1.2, reliance was placed on experimental
data., Normal force coefficient distributions for the Saturn VN Reactor-In-Flight-Test
(RIFT) and Saturn VN operational vehicles are shown in Figs. 5~1 and 5-2, These
distributions were obtained from data in Refs 26, 27, 1, and 2. Strong emphasis was
placed on results from Ref. 27, because these results concern the 20-deg blunted cone~
cylinder configuration, At Mach numbers of 1.5 and 2. 0 theoretical methods were
combined with test results from Refs. 1, 2, and 27 to obtain the distributions.

Pressure coefficient distributions are shown by Figs. 5~3 and 5-4. Due to the greater
number of pressure orifices directly aft of the cone-cylinder juncture, emphasis was
placed on results of Ref. 27. At Mach number 1.5, the second-order shock method of
Syvertson (Ref. 28) provides excellent agreement with experimental data.

5.2 FLUCTUATING PRESSURES

Fluctuating pressures acting on the surfaces of the S-N stage (RIFT) have been esti-
mated for a typical trajectory. These fluctuating pressures are caused by flow sepa-
ration, rocket-engine noise, normal shock waves, and the turbulent boundary-layer
noise. On the launch pad and during the subsonic portion of flight, the engine noise pre-
dominates; near Mach number 1. 0, normal shock waves occur to produce large pres-
sure fluctuations over a short time duration, and the turbulent boundary-layer noise
predominates, with lesser pressures, in the supersonic speed range. Fluctuating
pressures affect panel fatigue life, especially when the characteristic frequencies of
the pressures and panel coincide.

5-1
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Figure 5-5 shows the overall or total root-mean-squared (r.m. s.) fluctuating pressure
acting on the cylindrical surface of the S-N stage during a typical trajectory. This is
a summation of maximum r.m, s. pressures oscillating at all frequencies and originating
from engine noise, unsteady normal shocks, and the turbulent boundary layer. These
values are to be superimposed upon the steady-state pressure distribution. Figures
5-6 through 5-9 present the oscillation frequencies and associated r.m.s. pressures
generated by each source (frequency distributions or power spectrums). Figure 5-5
shows that engine noise is predominant over the initial 42 sec of flight time with the
spectrum of Fig. 5-6 applicable. From about 42 to 50 sec, boundary layer and engine
noise are both significant, and the distribution shown in Fig. 5~7 applies. In the flight
region where the missile is affected by the normal shock (50 to 58 sec), the spectrum
of Fig. 5-8 may be used for frequencies below 550 cps and that of Fig. 5-9 for higher
frequencies. Above Mach number 1.0 (59 sec), pressure fluctuations caused by the

boundary layer are predominant, and spectrums from Fig. 5-9 should be used.

The form of the functions used in the spectrum should be noted; the pressure is given

as r.m.s. pressure squared/one-cycle frequency bandwidth, i.e., the value of the func-
tion at any frequency represents the square of the r. m.s. pressure acting at the speci~
fied frequency. If the combined r.m.s. pressure-level acting in a range (or band) of
frequencies is desired, an integration between the limiting frequencies is performed to
give the square of the desired answer. The pressure levels in Fig. 5-5 may be obtained
from an integration over the entire frequency range. The logarithmic scale of frequency
should be treated carefully; the pressure levels appear quite low at the individual fre-
quencies above 1,000 cps, but note that the high-frequency scale is compressed, and
these low pressures act over a very large frequency range (9,000 cps or more, i.e.,
Pim g = (P‘Z‘W e /cps) (Af). An illustrative example appears in Fig. 5-7 where the
overall pressures (integrated area) associated with the two dotted curves are equal.
These results would be more obvious if a linear scale were used, but space limitations

make this approach impractical.

The engine spectrum is shown in Fig. 5-6 for static firing conditions. Estimates indi-
cate that this distribution may be used for all the overall pressure conditions shown in

LOCKHEED MISSILES & SPACE COMPANY
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Fig. 5-5 (up to 42 sec) by proper scaling. To find the pressure acting at a frequency
or in a band in this time range, form the ratio of the squares of the overall pressure
(Fig. 5-5) to the pressure at static firing, (15.4)% and multiply this scaling factor
times the square of the pressure level obtained at the desired frequency from Fig. 5-6.
The same procedure may be used with Figs. 5-7 and 5-9. In Fig. 5-9, three body
stations and Mach numbers are shown; the combination of parameters nearest to the
point-of-interest should be the basis for scaling. Pressure levels from two sources

at the same frequency may be combined by adding the squares of the r. m. s. pressures
shown in the individual spectrums.

The engine spectrum is shown for the worst condition which occurs at the aft skirt; the
pressure fluctuations travel along the missile at a velocity equal to the difference be-
tween the speed of sound and speed of flight, while the pressure magnitude decreases
with the distance squared. The normal shock fluctuations are estimated to act over
about 5 longitudinal inches and move aft as the Mach number increases from 0. 75 to
0.95. Since this movement cannot be predicted, any point on the skin may be subject
to the worst condition noted in Fig. 5-8 for a short time period. Discrete boundary-
layer fluctuations move from front to rear at ~ 0.8 times the missile velocity. Indi-
vidual fluctuations lose their identity in about 4 to 8 feet. Figure 5-9 shows that pres-
sures become relatively larger in the low-frequency ranges as the distance from the

nose increases.

For a preliminary estimate, the list of cyclic pressure sources is reduced to the engine
noise, oscillating normal shocks, and boundary-layer turbulence. The cyclic pressure
level and frequency spectrum in Fig. 5-5 and 5-6 were estimated from an empirical
relation for pressure levels in frequency bandwidths at the missile surface (Ref. 29).
These values were compared to data for pressures at the nose of the Atlas (Refs. 30
and 31), estimates for the Saturn C-V (Ref. 32), and two experimental correlations
(Fig. 70 of Ref. 33).

Sound pressure level at the S-N stage under static firings is given in Fig. 5-10. In all
cases, the estimated r.m. s. pressure fluctuations at the aft-end of the S-N stage skirt
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were approximately 1 to 2 psf higher than referenced information. Data from Atlas
and C-1 tests should be applicable on a scaling basis, since the ratios of thrust to

the square of the distance to the point-of-interest are similar in magnitude to the
configuration. The frequency distribution of pressures given by the empirical equation
was modified slightly to provide agreement with peak frequency of the referenced
information (Fig. 5-10). This curve was replotted to more useful form in Fig. 5-6.
As the vehicle accelerates, the overall pressure-level drops off as a function of

(1—M)2 (Refs. 29, 31, and 33), while the spectrum maintains the same shape (Refs. 38
and 39).

Test data are the basis for the rough estimate of the magnitude and frequency distri-
bution of the fluctuating pressures shown for the normal shock phenomena in Figs.
5-5 and 5-8. Note that the data of Fig. 5-8 is rather sketchy; however, no other experi-

mental evidence has been found to support or refute the results.

Pressure fluctuations are characteristic of the turbulent-boundary layer. The literature
(Refs. 29, 30, 33, 34, 35, and 36) indicates that the overall rms pressure fluctuation

is proportional to the free stream dynamic pressure (Prms = Kq,). Measured values
of the constant of proportionality (K) generally fall between 0. 0045 and 0.02 with 0. 006
being most common (Refs. 35 and 36). In Ref. 35 an extensive literature review was
made in an attempt to correlate the frequency distribution associated with boundary-
layer fluctuations; these results are shown in Fig. 5-11 along with the data for four
individual tests (Refs. 34 and 37). The parameters in the correlation indicated a
dependence upon the boundary-layer displacement thickness, free-stream velocity, and
dynamic pressure. The suggested design curve shown in Fig. 5-11 was selected to
envelop the data points for tests conducted in air. This curve has been replotted in
Fig. 5-9 for three body stations and three Mach numbers which bracket the expected
maximum dynamic-pressure conditions. (The boundary-layer thickness estimated for
a 1/7 power law velocity profile was used to reduce the correlated data.) The pre-
dominant trend in the spectrums was the movement of the peak pressure to lower fre-
quencies as distance from the nose increased; the overall pressure (integrated area)

remained the same. The level of the r.m.s. pressure fluctuation shown in Fig. 5-5
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was obtained by integrating under these curves to establish the empirical proportionality
constant of 0.009 in the relation between cyclic pressures and dynamic pressures,
Prms = 0.009 q_.

5.3 LAUNCH PAD FORCES

Launch pad steady-state drag characteristics are given in Fig. 5-12. Shown in this
figure are the distributed cross~force (drag) coefficients, CDc’ for the Saturn VN
RIFT and operational vehicles. The integrated drag coefficient value corresponds to
test results which measured pad loads on a dynamically scaled model of a large missile
at Reynolds numbers per foot up to 7 million. In addition to the steady-state forces,
oscillations of the missile in the drag direction may increase the forces by as much

as 15 percent (according to Ref. 38).

Transverse forces causing missile oscillations in a plane normal to the velocity vector
are random in nature for the Reynolds number range to be experienced by the RIFT
vehicle. These transverse forces are of the order~of~magnitude of the steady-state drag
forces. A method has been selected for future preliminary estimation of these forces.
Accurate determination of these forces then is only possible through testing of dynamically
scaled models. Experiments conducted thus far have shown that the transverse forces

are extremely sensitive to any external protuberances as well as missile nose contours.
5.4 STAGE VENTING

Preliminary calculations have been made to determine a venting-orifice size on the
20-deg nose fairing, The specific intention of this study was to determine the venting
which would alleviate the imposed aerodynamic forces on the structure throughout the
first-stage flight and reduce structural weight. The criterion established was that the
orifices must provide a pressure differential (Pinsi de Poutsi de) of 2 psid for the
entire first-stage flight period. For the study, a conical volume of 27,622 cu ft was
used along with a typical operational vehicle trajectory. The resultant total orifice
area estimated from this study was 1.6 sq ft. This total area may be distributed
around the periphery into a number of smaller orifices (totaling 1.6 sq ft).
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Estimates of internal pressure histories were based upon compressible isentropic
expressions for orifice flow with heat transfer, as programmed for the IBM 7090 com~
puter. External surface pressures were determined from S-N stage wind-tunnel tests
P61, Future studies may be required to determine interstage venting requirements
and requirements for venting undesirable boiloff products. Time history of the in-
ternal and external venting pressures for this study are presented in Fig. 5-13.

5.5 FLEXIBLE-BODY LIFT DISTRIBUTIONS

Present rough order-of-magnitude analyses of the aerodynamic forces acting on an
elastic missile utilize a ""quasi-static' approach to determine the lift distribution.
This method assumes basically that at any given instant-of-time the body is bending in
one of the structural modes. The local incremental lift due to bending is then taken
as the product of the rigid-body normal-force coefficient slope/in. times the body
deflection angle. That is:

AC = Cy ' %)
NLocal Ny 1
where:
CN ' = the rigid-body normal-force coefficient slope per unit length
(a4
o, = (9§/3x) — tangent of body-deflection angle
) = instantaneous body deflection at station X

This is a simple approach, however, and does not account for aerodynamic damping

caused by the body pitching motion and elastic bending motions.

A preliminary study has been initiated to determine the magnitude of these extraneous
effects as well as the effects of wind shear and gust environments on the lift distribu-

tions. Results are not yet available for publication. The method of approach is based
upon the crossflow momentum method as described by Bisplinghoff ("'Aeroelasticity"),
with added terms to account for body flexibility.
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Section 6
AERODYNAMICS FOR GROUND TRANSPORTERS

6.1 OVERLAND STAGE TRANSPORTER

Transportation of the S-N stage (Reactor-In-Flight-Test — RIFT) to the test facility
will be by a specially designed truck-trailer which will travel overland for a large
portion of the trip. The stage will be in a horizontal position and will be subjected to
local ground wind environment. Because of the tremendous size of the stage (tank),

a cross wind may impose significant drag and lift overturning moments. Preliminary
steady-state lift and drag characteristics of the S-N stage have been calculated and are

presented in this section.

Since skin friction and pressure drag are predominantly functions of Reynolds numbers
(when Mach number ~ 0), the Reynolds number (based on a 33-ft-diameter reference
length) versus wind speed are presented in Fig. 6-1. Note that for speeds in excess

of four mph, turbulent-flow characteristics exist on the stage. Skin-friction drag

was calculated using the method of Schoenherr (design curves in Ref. 16).*

A cross-force (drag) coefficient of 0.7 (based on area = length x diameter) is realistic
for Reynolds numbers of 107 order-of-magnitude. A launch-pad wind tunnel test of a
dynamically scaled large missile has measured a steady-state drag coefficient of 0.5
(based on planform area) at Reynolds numbers of 7 x 106, In Ref. 16 (Fig. 12, p 3-9),
a drag coefficient of 0.5 is shown at a Reynolds number of 107 for an end plated cylinder.
Experiments by Roshko on a cylinder (Ref. 39) produced a value of 0.7 at Reynolds
number of 107. In discussion with the MSFC analytical aerodynamics group, a value
of 0.7 was considered reasonable to include effects of roughness. Utilizing an assumed
ground proximity factor of 2.0 (as per Ref. 40), the tank drag coefficient is:

C = 0.7 x 2.0 = 1.4 (based on planform area)

D
c

*See Section 8 for list of references.
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Drag due to lift (similar effect on wings) is an assumption included in the ground prox-

imity factor.

Lift coefficient for a sphere in close proximity tothe ground is given as 0.4 in Ref. 16
(p. 12—4). A value of lift coefficient for the stage is taken as 0.5. Total drag force
and lift force is then calculated according to:

DRAG

1.4 (1/2 p V) (L x D)

I

LIFT 0.5(1/2 pV2) (L x D)

where:

= gtage cylindrical length ~ ft
= gtage diameter ~ ft

= sea-level density ~ slugs/ft3

<® g vt
|

= wind velocity ~ ft/sec

In addition to the steady lift and drag forces, oscillatory forces may be induced by the
trailing vortex system. At present, means of calculating such effects are unknown,

and tests would be required for accurate evaluation.
6.2 ONSITE STAGE TRANSPORTER

Steady-state and oscillatory (transverse) force coefficients have been estimated to facili-
tate design of the S-N stage onsite transporter used within the test facility. The results
show that the oscillatory transverse forces can be of the same order-of-magnitude as
the steady-state drag forces. Steady-state drag coefficients distributed along the struc-
ture are noted in Fig. 6-2 for the onsite transporter. Integration of this distributed
coefficient along the tank will give the total drag coefficient of the stage. The support
dolly structure (Fig. 6-3) coefficients are shown in Fig. 6-2 as concentrated forces for

ease in computation. Local drag is calculated according to:

LOCAL DRAG = Cp_ q() Apgs ~ 1b/in.

LOCKHEED MISSILES & SPACE COMPANY
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Fig. 6-2 Steady-State Drag Coefficients Distribution for Onsite Transporter
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where:

dynamic pressure at station (x), (99.9% wind)
855 ft2

q(x)
A

1l

ref

For the S-N stage, a drag coefficient of 0.7 (based on planform area) was adjusted to
compensate for end effects utilizing a fineness ratio drag factor (1) of 0.56 as per
Ref. 41. These results are applicable for Reynolds numbers 5.0 x 109 (at 30 mph
the Reynolds number is 9.3 x 106). A flat-plate drag coefficient of 2.0 (Ref. 16) was
utilized for the tank supporting structure.

Distributed oscillatory lift-force coefficients acting in a plane transverse to the flow
direction are presented in Fig. 6-4. The oscillatory transverse forces are random with
time; therefore, these forces are treated in the frequency domain utilizing power spec-
tral density representation of the random lifting forces. The method described in Ref.
42 was utilized for estimating these unsteady forces. Distributions of the oscillatory lift
coefficients (Fig. 6—4) are presented for a 99.9 percent wind profile (Fig. 6-5), and for
frequencies of 0.25, 0.50, and 1.0 cps. Phase relations between the structure oscilla-

tion and the aerodynamic force are unknown.

The results presented here are preliminary in nature and are representative of current
methods in handling unsteady transverse forces on upright structures. The steady-state
drag coefficient results presented are independent of ground wind profiles, whereas the
oscillatory lift coefficients are dependent upon wind profiles. These oscillatory 1ift coeffi-

cients are used in calculations of the vehicle structural dynamics.
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Section 7
ROCKET PLUME INVESTIGATIONS

7.1 ATTITUDE CONTROL MOTOR WAKE CHARACTERISTICS

The jet wake from the attitude control jets has been determined for two operating con-
ditions: (1) 28 psia chamber pressure and 250°R chamber temperature and (2) 16 psia
chamber pressure and 38°R chamber temperature. These plume characteristics are
being used as a guide to the placement of the control system. Figure 7-1 presents lines
of constant Mach number and Fig. 7-2 lines of constant flow angle for the high pressure
case. Figures 7-3 and 7-4 present similar data for the low pressure case. In each
case, the ratio of specific heats is assumed to remain constant at the value in the

chamber throughout the expansion.

In these calculations, the hydrogen is assumed to act as an ideal gas. Because of the
low temperature in the chamber, this assumption is not completely true throughout the
jet wake. If the gas temperature and pressure fall below the condensation limit, the

gas may liquify or become solid. However, some degree of supercooling may be ex-
pected to exist. Tests of steam turbines indicate that steam can be cooled approximately
25 percent below the condensation limit before appreciable flow changes occur. For air,
tests in hypersonic wind tunnels show a maximum cooling of 55 or 60 percent below the
condensation 1imit. The actual amount of supercooling that can exist in hydrogen is
unknown. It is assumed in this study that hydrogen can be supercooled to a maximum
value of 50 percent of the condensation limit. Figure 7-5 presents the vapor pressure
curve of hydrogen versus temperature and also the isentropic expansion curves for
hydrogen for the two cases being considered. As indicated in Fig. 7-1, for the high
pressure case, condensation will start at approximately Mach number of 7.5 and is
supercooled 50 percent by Mach number of 10.5. In the low pressure case, 50 percent

supercooling occurs at a temperature of 19°R which corresponds to condensation in the

LOCKHEED MISSILES & SPACE COMPANY
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nozzle at an area ratio of about 1.30. In this case, the jet wake presented is hypothet-
ical and may not exist at all in a gaseous state. In either case, the jet wake presented

is invalid once appreciable condensation occurs.

7.2 INTERSTAGE RETROROCKET IMPINGEMENT

A limited investigation was conducted to determine possible methods of mounting the
retrorockets. Investigation of the effective angle of the retrorockets required for
satisfactory separation shows that the resultant thrust of these rockets should be at
an angle of 14. 8 deg with respect to the centerline of the S~N stage (subsequent to this
study, this angle has been revised to 14.4 deg).

Of the several ways of mounting these motors internally, the best way seems to be as
shown in Fig. 7-6 with the motor mounted parallel to the vehicle centerline and a deflec-
tor surface shaped so as to produce the required thrust angle. This study is prelim-
inary and is intended only to investigate the feasibility of the design. Therefore, this
investigation does not determine optimum deflector shape or the optimum mounting
depth of the retro motor but only the forces produced by a selected deflector shape and

motor mounting.

Figure 7-7 shows the effect of varying the length of the deflector. A deflector having
a length of 55 in. is required to produce the desired 14. 8-deg thrust angle.

An alternate method of installation that was investigated consists of using a blast tube
of circular crosssection with a diameter equal to the nozzle exit diameter connecting
the motor to the surface. In this case, as the angle of the nozzle is reduced, the
normal force caused by the bevel of the blast tube increases. Calculations show the
minimum effective thrust angle is 41.5 deg with the motor nozzle canted 20 deg.

Since this angle is much greater than desired, this method is not useable in this case.
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